Carbon monoxide and mitochondria—modulation of cell metabolism, redox response and cell death

نویسندگان

  • Ana S. Almeida
  • Cláudia Figueiredo-Pereira
  • Helena L. A. Vieira
چکیده

Carbon monoxide (CO) is an endogenously produced gasotransmitter, which is associated with cytoprotection and cellular homeostasis in several distinct cell types and tissues. CO mainly targets mitochondria because: (i) mitochondrial heme-proteins are the main potential candidates for CO to bind, (ii) many CO's biological actions are dependent on mitochondrial ROS signaling and (iii) heme is generated in the mitochondrial compartment. Mitochondria are the key cell energy factory, producing ATP through oxidative phosphorylation and regulating cell metabolism. These organelles are also implicated in many cell signaling pathways and the production of reactive oxygen species (ROS). Finally, mitochondria contain several factors activating programmed cell death pathways, which are released from the mitochondrial inter-membrane space upon mitochondrial membrane permeabilization. Therefore, disclosing CO mode of action at mitochondria opens avenues for deeper understanding CO's biological properties. Herein, it is discussed how CO affects the three main aspects of mitochondrial modulation of cell function: metabolism, redox response and cell death.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon Monoxide Targeting Mitochondria

MITOCHONDRIA PRESENT TWO KEY ROLES ON CELLULAR FUNCTIONING: (i) cell metabolism, being the main cellular source of energy and (ii) modulation of cell death, by mitochondrial membrane permeabilization. Carbon monoxide (CO) is an endogenously produced gaseoustransmitter, which presents several biological functions and is involved in maintaining cell homeostasis and cytoprotection. Herein, mitocho...

متن کامل

نقش استرس اکسیداتیو در تکثیر بی‌رویه و مرگ سلولی

Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...

متن کامل

Mitochondrial one-carbon metabolism maintains redox balance during hypoxia.

Mitochondria generate high levels of reactive oxygen species (ROS) to activate protumorigenic signaling pathways. In parallel, the mitochondria must also increase their antioxidant capacity to lower ROS levels and prevent cancer cell death. In this issue of Cancer Discovery, Ye and colleagues demonstrate that serine catabolism through one-carbon metabolism within the mitochondrial matrix is nec...

متن کامل

Carbon monoxide targeting mitochondria in astrocytes: modulation of cell metabolism, redox response and cell death

MicroRNAs (miRNAs) are short, 22–25 nucleotide long transcripts that may suppress entire signaling pathways by interacting with the 3’-untranslated region (3’-UTR) of coding mRNA targets, interrupting translation and inducing degradation of these targets. The long 3’-UTRs of brain transcripts compared to other tissues predict important roles for brain miRNAs. Supporting this notion, we found th...

متن کامل

MODULATION OF MITOCHONDRIAL UPTAKE OF A DENOSINE BY NITROBENZYLTHIOINOSINE

In this study the uptake and metabolism of adenosine by mitochondria has been investigated. Incubation of CEM cells mitochondria preparation with [3H] -adenosine showed substantial uptake and metabolism of adenosine. Adenosine was both anabolized to AMP, ADP and ATP, and also catabolized to inosine. The highest concentration of metabolites in extracted mitochondria was due to AMP. The mito...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015